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EFFICIENT ANALYTIC SERIES SOLUTIONS FOR 
TWO-DIMENSIONAL POTENTIAL FLOW PROBLEMS 

A. W. GEL* AND W. W. READ? 
Department of Mathematics and Statistics, James Cook University of North Queensland, T o w i l l e ,  Qld. 4811, Austnalia 

SUMMARY 
The solution of Laplace’s equation for a wide range of spatial domains and boundary conditions is a valuable asset 
in the study of potential theory. Recently, classical analytic series techniques based on separation of variables have 
been modified to solve Laplace’s equation with both irregular and free boundaries. Computationally the free 
boundary problem is reduced to an iterative sequence of curve-fitting exercises. At each iteration the series 
coefficients for a known boundary problem are evaluated numerically. In this paper a new interpolation approach 
is presented for the estimation of the series coefficients. It has the advantages of providing a conceptually simpler 
view of the series technique and of estimating the series coefficients significantly faster than alternative 
approaches. Owing to the choice of basis functions in the truncated series solution, rigorous estimates of the error 
in the approximation are immediately available. A free boundary problem from steady hillside seepage with 
irregular boundaries will be used to illustrate the new technique. 
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1. INTRODUCTION 

The study of potential theory is based on solutions of Laplace’s equation, one of the most commonly 
occurring equations in applied mathematics. ’ Applications frequently arise in fluid mechanics and 
solutions are often sought for a wide range of spatial domains and boundary conditions. Solution 
methods are typically numerical and include boundary integral’ and finite element methods3 and (less 
commonly) spectral Unfortunately, numerical schemes have the propensity to be 
computationally expensive and cumbersome to implement, with accurate error estimates not always 
immediately available. 

Numerical procedures based on analytical techniques are preferable as they can provide 
computationally efficient ways of producing accurate, reliable solutions. Solutions thus obtained are 
inherently valuable as they can also be used to check the results of purely numerical schemes. 
Conformal transformations can provide closed-form analytical solutions,6 but for a large range of 
boundary geometries, suitable transformations are not easily found. 

Classical analytic series solutions obtained by separation of variables7 satisfy the partial differential 
equation, some (but not all) of the boundary conditions exactly. This is in direct contrast with 
spectral methods, where the partial differential equation is not satisfied exactly and the boundary 
conditions usually are. This has important implications for the efficiency and accuracy of the solution 
technique. In particular, the dimension of the problem can be reduced by one, using analytic basis 
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functions. Additionally, rigorous estimates of the maximum error of the (analytic) truncated series 
solution are immediately available from the boundary errors. However, classical analytic series 
techniques have had limited application, as the method generally relies on regular, known boundaries. 
Analytical techniques encounter further difficulties in free boundary problems, where at least one 
boundary is initially unknown. 

Recently the classical series solution has been modified to solve Laplace’s equation with both 
irregular and free boundaries.899 The free boundary location is first estimated, then iteratively improved 
by solving a known boundary value problem at each step, using one of the free boundary conditions as a 
cost function. For the solution of the known boundary value problem, the series coeffcients are 
estimated using numerical techniques. These techniques include quasi-least squares,991o least squares’ 
and eigenfimction expansions. “ 

A comparison of these analytic series techniques has recently been performed for Laplacian free 
boundary problems,12 from which the eigenfunction expansion method appears to be the most suitable. 
In particular it provides a general theoretical framework for the series solution as well as a comparatively 
efficient procedure for determining the series coefficients. 

In this paper a new approach is presented for the efficient estimation of the analytic series coefficients, 
derived from interpolation or pseudospectral  method^.'^'^ Although the theoretical basis for this new 
approach is not immediately obvious, it relies implicitly on the same underlying assumptions as the 
eigenfunction expansion method. Moreover, the new method provides a conceptually simpler view of 
the series technique and, more importantly, a significantly faster procedure for estimating the series 
coefficients. 

This paper is organized into six sections. Following this introduction, the Laplacian free boundary 
problem is formulated in Section 2. The general analytic series solution is presented in Section 3, before 
detailing two techniques, eigenfunction expansion and interpolation, for estimating the series 
coefficients in Section 4. The interpolation method will be illustrated in Section 5 ,  where a free 
boundary problem from steady hillside seepage is solved. Finally, a discussion of the results is presented 
in Section 6. 

2. POTENTIAL FLOW PROBLEMS 

Laplace’s equation in the plane, 

governs the solution $(x, y )  on the interior of the domain in Figure 1 (ABDEFGHA) to which suitable 
boundary conditions are applied. Assuming vertical and impermeable side boundaries at x = 0 (AH) 
and x = s (CE), one then has 

The bottom boundary (HGFE), defined by y =fb(x) ,  is arbitrary but also assumed impermeable. The 
normal derivative along this curve is required to be zero, so that 

where the dot denotes differentiation with respect to x .  
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Figure 1. The boundary value problem to be solved. Laplace's equation governs the interior, supplemented by various conditions 
on the boundaries 

The top boundary, defmed by 

consists of an arbitrary (but known) segment f '(x) (AB) and an unknown segment q(x) (BD) which is 
referred to as a free boundary. The length of the free boundary, determined by r, is also unknown. Along 
the entire top boundary (ABD) the solution is subject to a Dirichlet boundary condition 

whilst along the free boundary component (BD) the Neumann boundary condition 

is also imposed. Unfortunately, this boundary condition is non-linear and implicit in q(x). However, (6) 
can be linearized' by introducing a conjugate streamhction $(x, y )  which is related to 4(x ,  y)  by the 
Cauchy-Riemann equations 

_-  a4 a* -- a4 a* 
ax -5' ay --ax* 

Substituting into (6) yields 

= -i'(X)J{l + [ t j (X) l2 } .  

(7) 
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Integrating the right-hand sides with respect to x,  the Neumm condition becomes 

(10) 

The solution 4(x, y) and free boundary q(x) are then determined by solving Laplace's equation (1) 
subject to the boundary conditions (2), (3), (5) and (10). This can be achieved by assuming an initial 
location for the free boundary and solving the corresponding known boundary value problem. The 
estimated free boundary is then updated using the streamfunction condition (1 0) as a cost function. This 
procedure is continued until a predefined error tolerance is satisfied. 

2. I .  The free boundary 

The unknown boundary q(x) can be approximated by cubic splines14 as 

within L - 1 subintervals zj = [tj, <j+l],j = 1,2, . . . , L - 1, defined by breakpoints satisfying 

r = t l < t ; Z < . - - < t L - l < t L  =s. (12) 

Cubic splines are widely available in numerical software packages and provide smooth continuous 
interpolants once the spline coefficients dii are determined. The known boundariesf(x) andfb(x) can be 
used to construct an initial estimate by setting r = s/2, q1 = f ( r )  and qL = [ f ( s )  +fb(s)] /2 .  The 
remaining free boundary locations yl jJ = 2, . . . , L - 1, are determined by fitting a single spline 
segment between (t1, y l l )  and (tL, qL). 

Once the known boundary value problem (1 H3), (5) is solved, the solution can be used to update the 
free boundary locations using the streamfunction condition (10) as a cost function. Denoting estimates 
at the ith iteration by a superscript (i), the updated estimates are given by 

where the fiee boundary increments A$) are given by 

A$) = di)(@(x, q) + h'(x)J{l + [rj(~)]~} dx), (14) J 
with di) chosen (usually as a constant) to enhance the convergence rate of the scheme (see e.g. 
Reference 14). 

3. THE ANALYTIC SERIES SOLUTION 

The method of separation of  variable^'^'^ can be used to obtain an analytic series solution to Laplace's 
equation (1) subject to the side boundary conditions (2). Assuming that #J(x, y) = F(x)G(y), Laplace's 
equation can be separated into two second-order ordinary differential equations 

F(x) + D(X) = 0 

G(y) - AG(y) = 0 ,  

(15) 

and 

(16) 
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where 1 is the constant of separation. The impermeable, vertical side boundary conditions (2) imply 
p(0) = 0 and k(s) = 0, so that the solutions to (15) are 

F,(x) = C O S ( ~ ~ / S )  and 1, = ( n n / ~ ) ~ ,  n = 0, 1,2, . . . . (17) 
With the constant of separation specified, the general solution to (1 6) is then 

where the a, and B, are constants. The general solution to Laplace's equation (1) subject to the boundary 
conditions (2) is then given by 

where 

vn(x, y) = sinh(nny/s) cos(nm/s). (21) 
The bottom and top boundary conditions (3) and ( 5 )  are then used to determine the series coefficients 

a, and B,(n = 0, 1,2, . . .). Substituting (19) into (3) and ( 5 )  yields the equations 

00 c [ a n m  + B,4(x)l = h'(x), 

$(x) = nfb(x) cosh[nnfb(x)/s] sin(nm/s) + n sinh[nnfb(x)/s] cos(nm/s), 

(23) 
n=O 

where ii!(x) = 0, u',(x) = 1, $(x) = -s/n, v',(x) = yt(x) and for n 2 1 

(24) 

$(x) = njb(x) sinh[nn.fb(x)/s] sin(nnx/s) + n cosh[nnfb(x)/s] cos(nm/s), (25) 

U;(X) = c~~h[nny~(x)/s] cos(nm/s), (26) 

vi(x) = sinh[nnyt(x)/s] cos(nm/s). (27) 

= 0 and /3, = -a, tanh(nnfb/s), n 2 1, (28) 

If the bottom boundary is horizontal, fb(x) = fb,  then (22) admits the simple relationships 

between the series coefficients. These results occur since the functions ii:(x) and i&x) are both 
proportional to the Fourier cosines cos(nm/s) in that case. The linear independence of these functions 
then guarantees (28). Similarly, if the top boundary is constant, yt(x) =f, then (23) and (28) imply 

M c 8, cos(nm/s) = h'(x), 
n=O 

where the 8, = a,[cosh(nny/s) - tanh(nnfb/s) sinh(nnf/s)] are easily identified as the Fourier cosine 
coefficients of the function h'(x). The orthogonality of the Fourier cosines then permits computationally 
efficient evaluation of these coefficients. 
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However, if either the top or bottom boundary is not constant, the 'classical' approach above breaks 
down. The functions (24) and (25) or (26) and (27) are now no longer proportional, which leaves the 
relationships (22) and (23) between the series coefficients functionally dependent on x .  Mathematically 
the boundaries are not co-ordinate curves whereby one variable remains constant. A change of CO- 

ordinates may be found to achieve this; however, the new system may not allow a solution by separation 
of variables. For Laplace's equation there are 1 1  three-dimensional co-ordinate systems which enable 
direct separation,I6 but, for example, for a simple parallelogram there is no such system. 

Until recently this has discouraged researchers from persisting with the analytic series solution. 
However, alterative or 'non-classical' methods can be developed to estimate the series coefficients in 
(22) and (23). The first to do so were Powers et ul.,17 who considered a linear top boundary and a 
horizontal base at finite depth. Their method was to expand the functions (26) and (27) in terms of 
orthonormal functions using the Gram-Schmidt process. Extensions to an arbitrary top boundary1' and 
a horizontal base at infinite depth" soon followed. 

The series method was first extended to cater for sloping-based problems by Read and Volker:o 
whereby both sets of coefficients need to be estimated. Quasi-least squares,1o least squares' and 
eigenfunction expansions' I have all been investigated as possible estimation techniques. The third 
technique has also provided a strong theoretical h e w o r k  for the general analytic series solution and is 
described in the next section. With the theoretical basis established, a new approach is then presented 
which has the advantages of being both conceptually simpler and computationally more efficient. 

4. ESTIMATING THE SERIES COEFFICIENTS 

In practice not all the series coefficients in (19) can be evaluated or in general calculated exactly. 
Consequently the approximation 

is used instead, where un and b,, n = 0 ,1 ,2 ,  . . . , N - 1, are generally only approximations to the 
corresponding analytic series coefficients. Note, however, that 4 N ( x ,  y )  satisfies both Laplace's equation 
(1) and the side boundary conditions (2) exactly. Any error incurred will be from the violation, if any, of 
the bottom or top boundary conditions (3) or (5) by $ N ( ~ , ~ ) .  This may be written as 

N - 1  

n=O 
[a,u',(x) + bnu',(x)] - h'(x) = R',(x; a, b), 

where Rk(x; a, b) and RL(x; a, b) are the residual errors in &(x,y) on the bottom and top boundaries 
respectively and a and b represent the series coefficients ai and bi, k = 0 , 1 , 2 . .  . , N - 1, respectively. 

A powerful property of the analytic series (30) (see Section 5) is that the maximum (and minimum) 
values of the error in the solution will occur on either the top or bottom boundaries, so that attention may 
be focused on the solutions to (3 1) and (32), which are equations in only one spatial variable. The best 
practical solution would be one that minimizes both residual errors Rk(x; a, b) and R',(x; a, b) in some 
sense, so that the analytic series technique is essentially a onedimensional curve-fitting exercise, but 
where double expansions are used. The eigenhction expansion has provided a theoretical 
basis for these expansions and an outline of that method is presented in the next subsection. A new 
approach which is far more efficient is then presented. 
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4.1. Eigenfunction expansions 

The difficulty in computing the series coefficients for non-constant bottom and top boundaries arises 
fiom the functions Us(x) being dissimilar to the functions $(x) (and likewise for us(x) and us(x)). 
Assuming that the &x) are linearly independent and complete, in theory each is(.> can be represented 
as a linear combination of these functions. In practice a finite sum is used and an approximation is 
constructed: 

where the qt are expansion coefficients. 

rearrangement yields the equation 
Substituting this expansion into the left-hand side of (31) and setting this equal to zero, some 

The linear independence of the $(I) then produces the following relationship between the series 
coefficients: 

b = -Pba. (35) 

Here the nth series coefficient b, is seen to depend on possibly every coefficient ui for 
i = 0 , 1 , 2 ,  . . . , N - 1. This is to be expected, considering the connection between the functions ii): 
and E$) defined by (33). Notice also that (35) reproduces the result (28) in the case of a horizontal 
bottom boundary, for which Pb is diagonal. 

The series coefficients a, are estimated using the same approach for the top boundary condition (32). 
Approximating u:(x) and h'(x) by finite linear combinations of the functions u:(x) (again assumed 
linearly independent and complete) yields 

N - 1  

i d  
uh(x) * C c u : ( x ) ,  n = 0, 1 . 2 , .  . . , N - 1, 

N - 1  
h'(x) = 1 h;u;(x). (37) 

Substituting these and the result (35) into the left-hand side of (32) and equating the resultant expression 
to zero produces a linear system of equations for the series coefficients a,: 

(P - Pb)a  = h'. (38) 

Thus the approximate solution + N ( ~ ,  y) is fully determined once the expansion coefficient matrices 
F'" and FUb and vector h' are calculated and the linear systems (38) and (35) subsequently solved for the 
series coefficients a and b. The expansion coefficients are determined by a least squares procedure' 
which minimizes the integral of the square of the residual errors in the approximations (33), (36) and 
(37). This results in systems of linear equations of the form 

V b P b  = clb, V P  = CR, (39) 
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where, for i, j = 0, 1 ,2 ,  . . . , N - 1, 

c; = ($(x),  5J(x)), G;b = ($(x), $(x)), 

with 

The integrations and matrix inversions are then carried out by computer using standard IMSL Fortran 
routines. 

4.2. The Interpolation Approach 

In free boundary problems, the efficiency of the analytic series solution is governed by the 
determination of the series coefficients in (30) at each iteration. The eigenfunction expansion method 
determines the series coefficients as solutions to linear systems whose construction requires the 
numerical evaluation of the inner products (41)-(43). 

As an indication of the effort required (and potential difficulty) in performing such integrations, 
consider an element of the matrix v': 

v,; = [ sinh[inyt(x)/s] sinh [jnyt(x)/s] cos (im/s) cos (jm/s) h. (45) 

The sinh terms produce an envelope to the cosine product and the number of quadrature points needed 
to resolve its oscillation must be greater than i +j. For the matrix elements with i, j N N (i.e. bottom 
right-hand comer elements) this implies that the integration will require at least O(N) time to compute. 
A potential numerical obstacle in evaluting these integrals is the effect of the envelope 
sinh[iny'(x)/s] sinh[ jny'(x)/s]. As i andj  get larger, the exponential character of this function is more 
prominent-even with a slowly varying top boundary y'(x). The numerical evaluation of integrals 
involving such rapidly varying and oscillating integrands can be difficult to perform. 

An alternative approach which eliminates these features from the analytic series solution is derived 
from interpolation or pseudospectral methods. An excellent review is provided by Boyd5 and the 
method is conceptually very simple to understand. It eliminates the need for further expansions such as 
(33), (36) and (37) and applies directly to the residual errors in 4,(x, y) .  

Viewing equations (30H32) as an interpolation problem, the approximation &(x, y) is simply 
forced to satisfy the bottom and top boundary conditions exactly at a set of N discrete nodes 
xi E (0, s), i = 0, 1,2,  . . . , N - 1. Thus the series coefficients a and b are chosen so that the residual 
errors defined by (3 1) and (32) are zero at these nodes, i.e. 

R:(x,;a,b)=O and RL(xi;a,b)=O, i = O , 1 , 2  ,..., N - 1 .  (46) 
The convergence of the series solution obtained using the eigenfunction expansion method depends on 
the completeness of the basis hc t ions  in the top and bottom boundary approximations. This 
assumption is explicitly stated for the convergence of the approximations of ii:(x), ui(x) and h'(x) in 
(33), (36) and (37) as N --+ 00. Alternatively, the assumption of completeness is implicit in the 
interpolation approach and cannot be directly related to a particular set of basis functions in the 
boundary approximations. However, the convergence of the series using the eigenfunction expansions 
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implies that the series will also converge using the interpolation method. That is, as the density of nodes 
increases with N, the approximate solution 4&, y) converges to the analytic solution, barring round-off 
error. 

This method also belongs to the more general method of weighted residuals of which Finlayson" 
provides a detailed account. It differs here in that the residuals are formed not from the differential 
equation but from the boundary conditions, since the differential equation is automatically satisfied by 
the series solution. As such it should be viewed as an interpolation method, since only simple function 
evaluations will be involved. The choice of nodes is arbitrary, but evenly spaced nodes appear to be the 
best. This is not surprising, since the approximation (30) is similar to a Fourier cosine expansion (see 
(20) and (21)). Consequently this distribution of nodes will be adopted here. 

The conditions (46) result in 2N linear equations for the 2N series coefficients a and b, which may be 
written as 

P b a  + Fvbb = 0 ,  F*a + FVtb = ht, (47) 
where for i, j = 0, 1,2, . . . , N - I 

F t  = $(xi), (48) 

F;b = $(xJ, F+ I I J  = $ ( X i ) ,  (49) 

hi = h'(Xi). (50) 

b = -(Fvb)-lFuba, (51) 

FU' = ut(x.), 
I /  I 1  

These equations may be rearranged to give 

[F* - F"'(P)-'Fub]a = h', (52) 
which resemble equations (35) and (38) for the eigenfunction expansion method, except for the 
appearance of the additional matrices F"' and Fub. 

As mentioned above, the distinct advantage of the interpolation approach in terms of computational 
efficiency is that no inner products need to be evaluated. To illustrate this advantage Table I compares 
typical execution times for the eigenhction expansion and interpolation methods for determining the 
series coefficents for various values of N. From this one can clearly see the significant potential in 
adopting the interpolation approach. The eigenfhction expansion method is considerably slower, with 
the majority of the execution time spent on evaluating the inner products in (41H43). The interpolation 
method avoids this, as only simple function evaluations are required to construct the appropriate 
matrices. 

Table I. Comparison of typical execution times (in seconds) 
of eigenfunction expansion (EE) and interpolation (MT) 
methods to determine series coefficients for various values 

of N 

N EE INT 

10 1.2 0.07 
20 11.8 0.10 
30 52.5 0.16 
40 149.3 0.27 
50 336.8 0.49 
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5. NUMERICAL RESULTS 

In this section the interpolation method is demonsirated on a free boundary problem typical of steady 
hillside seepage problems. Steady seepage through a homogeneous aquifer is governed by Darcy's law, 
which reduces to Laplace's equation in the saturated flow domain when the hydraulic conductivity K is 
constant. For these problems, Cp is the hydraulic potential, with the Darcian velocities given by 
(-Ka+/&, -Ka+/@). The Neumann boundary conditions (2) and (3) correspond to an aquifer lying 
on top of an impermeable aquiclude, with the lateral extremities of the flow domain delineated by 
vertical, impermeable dykes. 

A steady water table will form under the soil surface when the aquifer is subject to a (constant) 
vertical recharge KR below the threshold necessary for complete saturation. The upper (saturated) flow 
boundary consists of the seepage facef(x), 0 < x < r, and the water table q(x), r<x<s.  Along this 
boundary the potential is equal to the elevation above an arbitrary datum and h'(x) = y'(x) in (5): 

&,Yt(X)l = Y ' ( 4 .  (53) 

Flow across the free boundary must be conserved and (noting that the recharge is vertical) 
$(x) = R / J {  1 + [Q(x)]'} in (10): 

+(x, q) = - Rdx = -Rx + constant. (54) J' 
Choosing the streamfunction as zero on the impermeable dykes and the aquiclude, the streamfunction 
condition becomes 

+(x, q)  = R(s - 4. (55) 

Assuming continuity of the seepage velocities, the slope i (r)  at the intersection of the water table and 
the seepage face will be given by 

i f r )  =s<r>. (56) 

At the upstream extremity of the aquifer the water table will intersect a vertical, impermeable dyke. At 
this point the recharge across the water table will be vertical and the slope of the water table will be zero: 

i(s) = 0. (57) 

The streamfunction condition needs some further modification before it can be used as a cost function 
in the solution process. At the upstream extremity of the water table (x = s) the streamhction will 
automatically satisfy (55 )  independently of the value of q(s). This difficulty can be oyxcome by 
replacing the streamfunction estimates IC;. at the breakpoints (ti, q,) by an averaged value #j: 

t j + q  
R(s - X) dx 

= /$-At; 

- R(At7 + At7)[2(s - t j)  - (At; - At;)] - 
2 9 

where A<,: and At; are appropriate increments on either side of the breakpoints. 
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The recharge at the breakpoints can then be estimated by 

and the water table updates A$’ in (1 3) at iteration (i) become 

(60) 6) - (i) A Aqj - c (Rj - R). 

For evenly spaced breakpoints, At,: = At; = (s - r) / (L - 1) at the internal breakpoints. At the 
intersection of the free surface and the water table (i.e. x = 5, = r), At; = 0, while at the last 
breakpoint (i.e. x = tr. = s), At: = 0. At each iteration, r must be estimated before the updates for the 
water table at the internal breakpoints can be calculated. Noting that q(x) = f ( x )  at the intersection of 
the soil surface and the water table, r can be obtained from qyl) by solving the implicit equation 

5.1. Flow solutions 

Two aquifer geometries have been chosen to demonstrate the interpolation method. In the first instance, 
a ‘canonical’ hillslope geometry has been chose, while the second example is of more general shape. 
The soil surface and basal geometries of aquifer 1 consist of parallel, linear segments at a slope of 5% to 
the horizontal. The soil surface of aquifer 2 is specified by cubic spline interpolants, while the basal 
geometry consists of piecewise continuous linear segments. The breakpoints, etc. for both aquifers are 
given in Table 11. 

The recharge rate for each aquifer must be chosen and an initial estimate of the water table location 
determined. The recharge rate used for aquifer 1 was R = 1.5 x while the rate for aquifer 2 was 
R = Initially the water table was approximated using one spline segment with r = s/2, qy’ = 
f ( r )  and q?) = [ f ( s )  +fb(s)]/2. The endpoint derivative conditions necessary to fully define the 
spline approximation are given by (56) and (57). 

The series coefficients for &,(x,y) can be generated using the interpolation approach, once the 
number of t m s  N in the series approximation has been specified. For both cases, N =  25 terms have 
been used in the series approximations. The matrix equations (51) and (52) for the series coefficients a 

Table 11. Boundary specifications, breakpoints and endpoint derivatives (if appropriate) 
for aquifer geometries 

Top boundary Bottom boundary 

Breakpoints Tme Breakpoints Tme 
Aquifer 1 

Linear [0,11 Linear [0901 
(5% slope) [50,3.5] (59’0 slope) [50,2.5] 

Aquifer 2 

Cubic spline [0,0.348] Piecewise linear [O,OI 
[33,0-4351 [33, -0.0871 
[67,0.696] [67, -0.3041 
[100,0.870] [100,0~304] 

Y(0) = 0 f(l00) = 0 
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and b proved to be well conditioned and were solved to machine precision using the IMSL linear 
systems subroutine library. Once the series coefficients have been calculated, the series expansion for 
the streamfunction @&, y) is also immediately obtained by involving the Cauchy-Riemann equations. 

Using the series expansion for the hydraulic potential, a normalized potential ON can be defined: 

where 4- and 4~ are the maximum and minimum values of the potential function respectively. 
Similarly a normalized streamfunction Y&, y) can be defined: 

where are the maximum and minimum values of the streamfunction respectively. 
Laplace’s equation is known to satisfy a maximum principle?* hence the maximum and minimum 
values for the potential function and streamfunction can be determined by examining the flow 
boundaries. 

The maximum value of the potential will occur at [s, q(s)], while the minimum value of the 
streamfimction will occur at [O,Jt(O)] (or anywhere on the impermeable boundary). The minimum value 
of the potential (and the maximum value of the streamfunction) can be determined numerically by 
dividing the boundary segments into a grid and comparing values at the grid points. The streamfunction 
will achieve a maximum on the soil surface and the flow will stagnate at this point. 

The lines of equal hydraulic potential (or equipotentials) can be calculated by solving the implicit 
equation 

and 

@N(X,.Y) = p ,  0 < p  < 1, (64) 

for y (or x) .  Similarly, streamlines can be calculated by solving numerically the implicit equation 

Yj.J(x,y) = p ,  0 < p  < 1. (65) 

Figures 2 and 3 show steady flow solutions for aquifers 1 and 2 with equipotentials and streamlines 
corresponding to lo%, 30%, 50%, 70% and 90% of the potential and streamfunction ranges. 

The equipotentials and streamlines form an orthogonal curvilinear set of co-ordinates. This is not 
immediately apparent owing to the large distortion of scale necessary to adequately display the solutions 
for both flow domains. The large aspect (i.e. length-to-depth) ratios of these aquifers are typical of the 
soil profiles encountered in hillside seepage problems. They also provide a good test for the 
interpolation method, as purely numerical schemes (such as the boundary integral method) can have 
difficulty in accurately resolving the fine detail in the flow domain. Fortunately the accuracy of the 
solution obtained using the interpolation approach can be rigorously quantified. In the next subsection 
the errors in the truncated series solution for each aquifer are provided. 

5.2. Iterative scheme and boundaly errors 

estimated recharge at the breakpoints (59) satisfies the error tolerance 
At the start of the iterative process the water table is approximated by one spline segment, until the 

r+l< 10-3. 
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Figure 2. Steady water table, equipotentials and streamlines for aquifer 1 
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Figure 3. Steady water table, equipotentials and streamlines for aquifer 2 
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Once this error condition has been met, additional spline segments can be added and the iterative 
process continued until (once again) the error tolerance is satisfied. Spline segments can be added in this 
fashion until the required accuracy in the free boundary condition is obtained. For aquifer 1, one spline 
segment was sufficient, while two segments were needed for aquifer 2. 

The error in the solution can be divided into two parts, namely the truncation error in the series 
approximation and the free boundary error. The truncation error cN(x,y) at any point in the solution 
domain is defined by 

&N(X,  Y )  = 44x9 Y )  - 4N(XY Y)9 (67) 

where +(x, y)  is the exact solution and &(x, y) is the truncated series approximation. Applying the 
Laplacian operator to (67) and noting that the truncated series satisfies Laplace's equation exactly, then 

V2EN(X,Y) = V2&, y) - V2&(X, y )  = 0. (68) 

Hence eN(x, y) satisfies Laplace's equation, the governing differential equation. As noted above, 
Laplace's equation obeys a maximum principle and so the maximum error in the series approximation 
can be determined by examining the boundary errors. 

The root mean square ( R M S )  error &; in the bottom boundary approximation (3) can be obtained 
directly from the residual errors along the bottom flow boundary (31) as 

1 /2 

&k = (if s o  [&(x; a, b)I2 d x )  . 

Similarly the RMS error EL in the top boundary approximation (5) can be obtained from (32) as 
1/2 

EL = ( f [RL(x; a, b)I2 d x )  . 
s o  

Table 111 lists the top and bottom boundary RMS errors for both flow solutions obtained above by the 
interpolation method with N = 25. 

The free boundary error is reduced during the iterative process until it is approximately the 
same magnitude as the top boundary error. The RMS error &$ in the streamfunction cost function (55) is 
given by 4 

and its values for aquifers 1 and 2 are included in Table 111. For aquifer 1, roughly 40 iterations were 
necessary to obtain sufficient accuracy for the streamfunction condition, while almost 90 iterations were 
necessary for aquifer 2. In the second case the streamfunction error could not be reduced enough with 
one spline segment, so two spline segments were used after approximately 40 iterations. 

The accuracy of the truncated series approximation will obviously depend on N, the number of terms 
in the series. The eigenfunction expansion method minimizes the average squared error in the boundary 
approximations, whereas the interpolation method forces the residual errors to be zero at a discrete set of 

Table 111. Root mean square errors in top and bottom boundary conditions and 
RMS error in (free boundary) streamfunction condition 

Aquifer 1 3.6 x 10-4  4.6 x 7.3 x 1 0 - ~  
Aquifer 2 1.1 x 1 0 - ~  2.8 x 1 0 - ~  4.3 x 10-5 
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points. For the solutions presented here, more terms were necessary in the series approximation when 
the series coefficients were estimated using the interpolation method, to satisfy the same error 
tolerances. Some experimentation revealed that roughly twice the number of terms were needed for the 
interpolation method to produce comparable boundary errors to the eigenfunction expansion method. 
However, an examination of Table I reveals that the computational cost of doubling the number of terms 
for the interpolation method is insignificant compared with the cost of the eigenfunction expansion 
estimators. 

6. DISCUSSION 

In the preceding sections an interpolation approach has been used to provide an analytic series solution 
for Laplace’s equation with irregular boundary geometry, in the context of a free boundary problem. The 
interpolation approach is simple to understand and implement, as well as providing a very efficient 
solution process. This is particularly evident as the number of terms, N, in the series increases. 

The eigenfunction expansion method provides a theoretical framework for the validity of the 
interpolation method and can also be used to generate the series coefficients. However, the cost of 
generating each matrix entry is proportional to N, whereas the matrix entries in the interpolation method 
are generated in roughly constant time. Although more terms in the series approximation appear 
necessary using the interpolation method, the overall efficiency of the method completely offsets this 
slight disadvantage. 

Owing to the choice of basis functions in the analytic series, the solutions produced encompass all the 
advantages of an analytic solution for the potential problem. One of these advantages is the immediate 
availability of the streamfunction, so that both the potential and streamfunction representations can be 
used simultaneously if required. As a consequence, equipotentials and streamlines can be efficiently and 
accurately calculated once the series coefficients have been estimated. Another significant feature is that 
exact error estimates are immediately obtainable by examining the boundary errors. The interpolation 
approach to the series coefficient estimation has been shown here to produce a robust and highly 
efficient vehicle for the solutions of a wide range of potential flow problems. 

REFERENCES 

1. 0. D. Kellogg, Foundations of Potential Theory, Dover, New York, 1953. 
2. J. A. Liggett and P. L. -F. Liu, The Bounhiy Integml Equation Method for Porous Mediu Flow, Allen and Unwin, London, 

3. E. 0. Frind and G. G. Matanga, ‘The dual formation of flow for contaminant transport modeling, I: Review of theory and 

4. C. Canuto, M. -Y. Hussaini, A. Quarteroni and T. A. Zang, Spectml Methods in Fluid Dynamics, Springer, New York, 1988. 
5. J. P. Boyd, in C. A. Brebbia and S. A. Orszag (eds), Chebyshev and Fourier Spechnl Methods, Springer, New York, 1989. 
6. G. F. Carrier, M. Krook and C. E. Pearson, Functions of a Complex Variable, McGraw-Hill, New York, 1966. 
7. G. F. Carrier and C. E. Pearson, in R. E. O’Malley Jr. (ed.), Ordinary Da~erential Equutions, Society for Industrial and 

8. W. W. Read and R. E. Volker, ‘Series solutions for steady seepage through hillsides with arbitrary flow boundaries’, Water 

9. W. W. Read and R. E. Volker, ‘BIEM/QLS computer generated solutions for sloping base seepage problems’, Comput. Fluids, 

10. W. W. Read and R. E. Voker, ‘A computationally efficient solution technique to Laplacian flow problems with mixed boundary 
conditions’, in Computational Techniques and Applications: CTAC ‘89, Hemisphere, Washington, DC, 1990, pp. 707-714. 

11. W. W. Read, ‘Series solutions for Laplace’s equation with non-homogeneous mixed boundary conditions and irregular 
boundaries’, Math. Cornput. Model., 17(12), 9-19 (1993); ‘Errata’, Math. Comput. Models, 18(7), 107 (1993). 

12. W. W. Read, ‘A comparison of analytical series methods for Laplacian free born- problems’, Math. Comput. Model., 
20(12), 3144  (1994). 

13. E 1. Davis, Interpolation and Approximation, Blaisdell, Waltham, MA, 1963. 
14. S. D. Conte and C. De Boor, Elementary Numerical Analysis: An Algorithmic Approach, McGraw-Hill, New YO&, 1980. 

1983. 

accuracy aspects’, Water Resources Res., 21, 159-169 (1985). 

Applied Mathematics, Philadelphia, PA, 1991. 

Resources Res., 29,2871-2880 (1993). 

23, 115-124 (1994). 



430 A. W. GILL AND W W. READ 

15. W. E. Boyce and R. C. D i h a ,  Elementary Diferential Equations and Bounhry Value Problems, Wiley. New Yo&, 1986. 
16. F. M. Arscott and A. Darai, ‘Curvilinear co-ordinate systems in which the Helmholtz equation separates’, IMA 1 Appl. Muth., 

17. W. L. Powers, D. Kirkham and G. Snowden, ‘Orthonormal function tables and the seepage of steady rain through soil 

18. M. S. Selim and D. Kirkham, ‘Seepage through soil bedding or a hillside due to a steady rainfall: 11. Soil surface of arbitmy 

19. N. L. Powell and D. Kirkham, ‘Flow patterns of steady rainfall seeping through bedded land or a hillside with a barrier at great 

20. W. W. Read and R. E. Volker, ‘Prediction of water table location for imgated hillslopes’, Res. Bull., Department of Civil and 

2 1. B. A. Finlayson, The Method of Mean Weighted Residuals and Variational Principles, Academic, New York, 1972. 
22. D. Gilbarg and N. S .  Trudinger, Elliptic Partial Differetial Equations of Second Order, 2nd edn, Springer, Berlin, 1983. 

27, 33-70 (1981). 

bedding’, J Geophys. Rex,  72,6225-6237 (1967). 

shape’, Soil Sci. SOC. Am. h c . ,  36,407-412 (1972). 

depth’, 1 H y d d ,  23,203-217 (1974). 

Systems Engineering, James Cook University of North Queensland, Townsville, 1987. 


